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Abstract
Linear inverse models (LIMs) are used to explore predictability and information content of
the Madden–Julian Oscillation (MJO). Hindcast skill for outgoing longwave radiation (OLR)
related to the MJO on intraseasonal timescales in the tropics has been examined for a variety
of LIMs using OLR and optionally 200 and 850 hPa zonal wind information channels. The
dependence of OLR hindcast skill on wind channels was evaluated by randomizing in time,
averaging in space, or omitting data entirely. Results show positive prediction skill (relative to
climatology) up to 3 weeks and wind information, mostly at the largest scales, adds 1–2 days
of skill.
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1. Introduction

The Madden–Julian Oscillation (MJO) is an intrasea-
sonal zonally propagating atmospheric signal in trop-
ical rainfall and related fields (Madden and Julian,
1971; Madden and Julian, 1972; Zhang, 2005; Wang,
2006; and Lau and Waliser, 2011). Besides impact-
ing weather directly in the tropics it also has impacts
in the extra-tropics through teleconnections and can
impact short-term climate events (Martin and Schu-
macher, 2011; Zhang, 2013). The long timescale of the
MJO suggests it could be a source of extended-range
predictability.

Linear statistical models can have comparable MJO
prediction skill to dynamical models (Newman et al.,
2009; Xavier et al., 2014; Klingaman and Woolnough,
2014) and offer unique opportunities for decomposi-
tion that may reflect on the MJO’s incompletely under-
stood dynamics. Cavanaugh et al. (2014, hereafter C14)
explored the skill of linear inverse models (LIMs)
in hindcasting the MJO, and this article extends and
complements that work methodologically and scientif-
ically. Klingaman and Woolnough (2014) include LIM
results from both C14 and the methods described here,
as a baseline for evaluating numerical model hind-
casts. Those hindcasts as well as C14 were scored
in the time-longitude (latitudinally averaged) space of
Wheeler and Hendon (2004)’s Realtime Multivariate
MJO index (RMM) encompassing Outgoing Longwave
Radiation (OLR) and zonal wind at 850 and 200 hPa
(u850 and u200). The relevance of including wind field
information in addition to OLR has been questioned,

for both MJO definition and diagnosis (Kiladis et al.,
2014) and for aspects of forecasting such as initiation
of a new MJO event (Straub, 2013), whose final para-
graph notes that “the RMM index is dominated by its
circulation components. However, the clouds and rain
are of special interest for impacts, so we will score all
hindcasts in terms of OLR anomaly (OLR’).

The goals of this article are: (1) to illustrate the work-
ings of LIMs in a more intuitive physical channel space
(time-longitude sections), rather than C14’s truncated
space of empirical orthogonal functions (EOFs); (2)
to explore how close the resulting large number of
channels brings us to the problem of statistical over-
fitting (the usual justification for such EOF truncation
approaches); and (3) to estimate the value of wind infor-
mation and small-scale information in statistical pre-
dictions of intraseasonal cloudiness signals, and con-
sider the implications as a potential partial clue to MJO
dynamics.

2. LIM summary and statistical forecasting
issues

Linear inverse modeling (Penland and Sardeshmukh,
1995) is a generalization of the simple idea that
anomalies in a stationary time series decay with
time – exponentially, in the case of a postulated sys-
tem obeying dx/dt=−BX+ noise. In a multi-channel
LIM (where a ‘channel’ is meant in the sense of an
information stream, i.e. a time series or a column in
a dynamical state vector), anomalies can oscillate and
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propagate among channels as they decay, because the
complex exponential function has those behaviors in
addition to the simple decay of the real exponential
function.

In fitting a LIM from data, one postulates that those
data came from a linear stochastically forced system
with the form:

dx
dt

= BX + noise (1)

where the state vector X comprises m columns of
anomaly values and B is an m×m matrix. All linearly
predictable dynamical interactions among the system
variables are represented in the linear operator B, also
known as the deterministic linear feedback matrix or the
system sensitivity matrix (Shin et al., 2010). It can be
shown for a system of form (Equation (1)) that if the
noise term is white (uncorrelated in time, but not nec-
essarily uncorrelated among channels) and Gaussian,
then for any specific time lag 𝜏0, B is related to the
time-lagged covariance matrix C(𝜏0) by:

B = 1
𝜏0

ln
[
C
(
𝜏0

)
C (0)−1] (2)

This result is formally identical to how one would esti-
mate a decay coefficient from lagged autocorrelation in
a univariate ODE, but here C and B are matrices and the
ln[·] function is the matrix generalization of the ordi-
nary logarithm. The optimum forecast (indicated by the
caret) for such a system, optimal in the sense of mini-
mizing squared error, is:

x̂ (t + 𝜏) = exp (B𝜏) x (t) = G𝜏x (t) (3)

where G𝜏 is known as the propagator matrix that
evolves initial anomalies, x(t), forward by any desired
lead time (𝜏).

When working from a finite, real-world data sam-
ple, we must view the B obtained from Equation (2)
as an estimate, and view Equation (1) as a postulate of
how the real world (which generated the data) acts. One
can estimate B from Equation (2) for various training
lags 𝜏0. The similarity of these various estimates for B
has been viewed as a test (called the ‘tau test’) of the
validity of the postulate that the form (Equation (1))
characterizes the real system adequately (Penland and
Sardeshmukh, 1995). Referring again to the simpler
univariate case: if the autocorrelation decay rate esti-
mated at different lags is similar, then indeed the decay
curve must be close to exponential, which bolsters the
case that the data-generating system acts like the sim-
ple linear decay equation being postulated (or fitted).
We found that Equation (3) gives similar hindcast skill
using B matrices estimated from 𝜏0 values ranging from
1 to 4 days in Equation (2) (not shown), supporting
the LIM approach. Only a little more skill is gained
by using lagged regression (LR) rather than LIM (not
shown). In LR, one estimates C separately for each fore-
cast lead time 𝜏, so that Equation (3) simply becomes
x̂ (t + 𝜏) = C (𝜏)C (0)−1 x (t). LIM results offer similar

scientific lessons to LR (not shown), but with more ele-
gance and simplicity, and so will be the main focus of
this article.

3. Data and experiments

This study utilizes time-longitude sections of daily
data from 1979 to 2011, including interpolated outgo-
ing long wave radiation (OLR) observed from satel-
lites (Liebmann and Smith, 1996) along with zonal
wind u at the 850 and 200 hPa levels derived from
the NCEP-NCAR Reanalysis project (Kalnay et al.,
1996). Each variable was averaged from 15∘S to 15∘N.
A 25-year composite annual cycle (1979–2004) was
removed from each variable to produce anomalies, and
a 120-day mean prior to each day was subtracted to
remove low frequency signals, following Wheeler and
Hendon (2004), which means that usable data begins
120 days into the time series. Each channel in the train-
ing set thus consists of a time series of more than
7000 daily observations. These high-passed anomalies
are denoted with a prime, for example OLR’. These
data contain many kinds of variability, but the hind-
cast skill here mostly bears the hallmarks of the MJO
(timescale and eastward propagation), so we have used
that moniker in the text and title.

It is helpful to define a LIM baseline or control case:
all three variables, in 15 degree longitude bins, using
𝜏0 = 2 days. Each of the 24 longitude bins thus con-
tains three channels consisting of a daily time series
of anomalous MJO index variables (OLR’, u850’ and
u200’). In summary, the baseline LIM has a total of
72 input channels, 3 for each longitude bin. For clean
comparisons to this baseline, including wind informa-
tion denial experiments, we choose to score the hind-
casts based on the twenty-four 15-degree OLR bins
only. When other channels (u850’, u200’) are used, their
impact is evaluated only in terms of the OLR prediction
skill. Likewise, when additional longitude fine struc-
ture is included, we score its effect only on 15 degree
scale OLR.

In many LIM studies (including C14), principal com-
ponent series truncation has been used to minimize
channel numbers while maximizing the variance repre-
sented. However, this encoding of the information chan-
nels makes a LIM’s workings somewhat opaque. Fol-
lowing the examples of Shin et al. (2010) and Hakim
(2013), we leave our channels as spatial boxes, and fur-
thermore they are ordered by adjacent longitudes, so
LIM forecasts and their errors can simply be contoured
in longitude-time space.

We train LIMs on data from 1979 to 1999 and
verify on the independent set 2000–2011, thus elim-
inating any chance of artificial skill (DelSole and
Shukla, 2009). Seasonal masks are also optionally
applied to the training period to seek an optimal
LIM construction for verification in that specific
season.
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Figure 1. OLR anomaly hindcast correlation skill score for each
of the 24 longitude bins from the baseline LIM.

4. Results

4.1. Longitude dependence of OLR’ predictability

LIM skill can be displayed as a function of longitude
(Figure 1). Figure 1 illustrates the correlation coefficient
between predicted OLR anomalies from the baseline
LIM and observed OLR anomalies for the 2000–2011
period. Regional differences in skill are evident. The
highest correlation at all lead times is found in the
region of the maritime continent between 110∘E and
130∘E. Here, the correlation remains above +0.6 for
6 days and remains above +0.5 for 13 days. By con-
trast, the east Pacific region (longitude 230 in Figure 1)
has the lowest one week hindcast correlation skill
(r<+0.1). Summarizing Figure 1, three hindcast skill
hot-spot peaks are identified within the central Indian
Ocean, the maritime continent and central Pacific, with
areas of low predictive skill from the east Pacific to
the Pacific coast of Central America. These results are
consistent with the notion that the MJO is the basis of
long-range prediction skill, as presupposed in our title,
even though the prediction is really for OLR’ including
all phenomena.

To have a single scalar skill score, we define the
verification error score (to be minimized) in future
experiments as a global sum of squared OLR’ hindcast
errors. The no-skill asymptote of this score is the global
climatological variance, which is the skill of a forecast
of zero anomaly every day (climatology used as a
forecast).

4.2. Impacts of using a large number of channels

Is a 72-channel LIM too large? That is, will statistical
overfitting of so many coefficients from finite train-
ing data samples lead to poor skill when tested on
independent data? The skill of our baseline results,
comparable to results from C14’s reduced EOF space
(Klingaman and Woolnough, 2014), suggests that the
answer is no. To further address this question, we push
the numbers much further by doubling the number of

Figure 2. Squared error of the baseline (red) and 144 channel
(blue) LIMs trained on two consecutive non-overlapping 10-year
epochs between 1979 and 1998. Two curves are shown in each
color; their (very close) spacing indicates the level of accuracy
for further deductions involving hindcast skill differences in
subsequent figures.

longitude bins from 24 to 48, making each longitude
bin 7.5 rather than 15 degrees wide. This doubles the
number of channels from 72 to 144, quadrupling the
number of coefficients in the G and B matrix esti-
mates. Furthermore, we reduce the training set into
two independent and consecutive training periods to
estimate the effects of sampling error in our final results
graphical space. This experiment reduced the number
of data points used per coefficient estimated from 50 to
25.∗ The change from 15 degree to 7.5 degree longitude
resolution has a negligible effect on hindcast error
(black curves are only slightly above the red curves in
Figure 2), thus providing little evidence of overfitting at
7.5 degree longitude bin resolution. However, overfit-
ting becomes steeply worse once longitude resolution
increases to 2.5 degrees (8 data values per coefficient,
not shown).

4.3. Estimated value of wind information:
illustrating randomization method

Excluding u850 and u200 from the LIM provides phys-
ical insight regarding the impact of wind anomalies on
the prediction of OLR anomalies associated with the
MJO (Figure 3). The skill score omitting or randomiz-
ing wind channels during training and hindcasting (blue
and green curves) is compared to the baseline LIM (red
curves repeated from Figure 2). Figure 3 indicates that
the wind information in the baseline LIM does indeed
contribute unique and valuable information content to
the LIM for OLR’ prediction out to 15 days, a result
clearly significant with respect to sampling noise (the

∗Of course, the statistically important information measure is indepen-
dent degrees of freedom per coefficient estimated, not data points per coef-
ficient. But daily timescale OLR is not excessively autocorrelated, and the
rules of thumb for relating degrees of freedom to data points using auto-
correlation are imprecise and debatable, so we use data points here for
simplicity.
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Figure 3. As in Figure 2 but for an OLR only LIM (blue), the
baseline LIM with scrambled winds (green), and the baseline LIM
(red). Zoomed in insert provided as well.

gap between the red curves). Furthermore, we can con-
clude that omitting vs. randomizing the wind channels
has a very similar effect, indicating again that our LIMs
are far from the danger of overfitting, with the modest
number of channels and large amounts of training and
verification data used here.

4.4. Decomposition of the value of wind
information

We also want to know what aspects of the wind field
contain the important information content for predict-
ing OLR: the zonal mean wind, the first two zonal
wavenumbers (indicative of large-scale convergence
and divergence) or other aspects? To address this ques-
tion, we construct a 30-channel LIM built from an
anomalous state vector with OLR’ for each 15 degree
longitude bin (24 channels), the zonal mean from u850’
and u200’ (two channels), and the first two wavenum-
bers of u850’ and u200’ (four channels). We apply the
channel randomization technique introduced in the pre-
vious section to test the impact of various wind channels
on the prediction of OLR’.

To partition the wind channels’ information content,
Figure 4 shows results from four 30-channel LIMs: (1)
OLR data only (randomized zonal mean and the first
two wavenumbers of u850 and u200), (2) OLR and the
first two wavenumbers (randomized zonal means), (3)
OLR and the zonal means (randomized wavenumbers 1
and 2), and (4) OLR with all six wind components. For
reference, the ‘baseline’ LIM with all wind information
at 7.5 degree scale is repeated in red, with two lines
trained from independent halves of the training epoch as
an indicator of the statistical significance of difference
due to finite-sample effects.

The OLR’ only LIM exhibits the worst skill (greatest
error, magenta curve in Figure 4 up to 2 weeks lead
time) while the ‘baseline’ is the best (red curves). The
cases in between essentially map the amount of useful
information content in various aspects of u850’ and
u200’. Results may be summarized as follows:

Figure 4. Squared error for five LIMs calculated using 15 degree
longitude bins and trained on the following data channels. Listed
in order from highest error to lowest error at a 10-day hindcast
lead time are (1) OLR only (magenta), (2) OLR and wave num-
bers 1 and 2 for u850 and u200 (green), (3) OLR and zonal mean
wind (black), (4) OLR, zonal mean winds, and wave numbers 1
and 2 (blue), and (5) the baseline LIM with all wind information
(double red curves, for two non-overlapping half-length training
periods). The vertical dashed grey line provides a visual refer-
ence at the 10-day lead time. Zoomed in insert provided as well.

• Value of all wind information (‘baseline’ vs. OLR
only): 1.5–2 days of additional skill between 5 and
10 day hindcast lead time (red curves on Figure 4; as
in Figure 3)

• Zonal means plus wavenumbers 1+ 2: about the
same as the ‘baseline’ LIM (blue curve on Figure 4)

• Zonal means alone: about 1/2 of total wind signal
(black curve on Figure 4)

• Wavenumbers 1+ 2 alone: about 1/3 of total wind
signal (green curve in Figure 4)

The contributions of ‘about 1/2’ and ‘about 1/3’
need not sum to unity, because the channels are not
orthogonal, merely linearly independent. In particular,
wavenumbers 1+ 2 may contain sample-specific noise
as well as robustly useful signal, and overfitting of
that noise in the training period could yield lower skill
(merely 1/3 instead of 1/2 of the total value of all wind
information) in the evaluation period.

4.5. Seasonality of predictability

The MJO is seasonally strongest in the northern autumn
and winter seasons, with summer intraseasonal vari-
ability sometimes given a different name such as MISO
or BSISO (Kikuchi et al., 2012; Sharmila et al., 2013).
Our findings so far suggest that our dataset is plenti-
ful enough to give robust results even if subdivided.
Might OLR’ hindcast skill be increased if the training
set and verification are confined to certain seasons,
rather than pooling all data? To test this notion, the
baseline LIM from Figure 2 was subdivided into an
all season and boreal winter (DJF) datasets for both
training and evaluation. OLR’ hindcast skill is much
better for DJF training and scoring, compared to the 72
channel all-season LIM (black vs red in Figure 5). If a

© 2016 The Authors. Atmospheric Science Letters published by John Wiley & Sons Ltd Atmos. Sci. Let. 17: 362–367 (2016)
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Figure 5. As in Figure 2 but for a LIM trained with DJF seasonal
(black) and all season (red) LIM.

normalized squared error of 0.85 is used as a no-skill
threshold, that is achieved after 7 days for the all season
LIM and 9 days for the DJF LIM. Alternatively, if
differences are measured vertically on the graph, for
a 1-week lead time prediction, the control LIM has a
7% increase in OLR anomaly hindcast error compared
to the DJF trained LIM from a 1-week hindcast lead
time. All squared errors asymptote toward 1 after a
14-day hindcast lead time. In summary, it is preferable
to train the LIM on less data, but on the proper season
(DJF), rather than a using a larger set of training data
including data from all seasons.

5. Conclusions

Hindcast skill for 15∘N–15∘S averaged OLR’ in
time-longitude space has been examined for a variety
of LIM models using daily OLR data and option-
ally 200 and 850 hPa zonal wind from 1979 to 2011.
Results show some positive prediction skill (relative to
climatology) up to 3 weeks, consistent with Cavanaugh
et al. (2014) who used a LIM built with a reduced
channel space of EOFs from maps (not just latitude belt
averages). Klingaman and Woolnough (2014) shows
that the present approach, with many more channels
but simpler spatial interpretation, is just as skillful,
or even more so for the Year of Tropical Convection
intercomparison case presented there.

The dependence of OLR’ anomaly prediction skill on
information in other channels of the dynamical state
vector was evaluated. LIM predictive skill is robust to
the number of input channels up to 144, giving similar
skill whether excess channels are omitted or random-
ized in their time ordering. Using 15-degree longitude
bins for the 3-variable LIM results in a 72× 72 lagged
covariance matrix consisting of 5184 coefficients fit-
ted to two training periods between 1979 and 1999
(3652 days× 72 channels), or about 50 data values per
coefficient. Even with double the number of channels
(7.5 degree bins; 1/2 as many data-per-coefficient), no

skill loss (evidence of overfitting) was evident. Skill
loss and possible overfitting is finally evident with 2.5
degree longitude bin channels or in this case at about 8
data values per coefficient.

Wind data (u850’ and u200’) adds 1.5–2 days of
additional skill. Wavenumbers 1 and 2 contribute less
than that in isolation (perhaps because they also con-
tribute ‘noise’ distractions: sample-dependent patterns
that are not repeatable in the verification period). All
higher wavenumbers contribute negligibly (the blue line
is statistically indistinguishable from the red lines in
Figure 4).

In general, winds and OLR are correlated predic-
tors, so their information content is mixed and they
are not cleanly separable despite the labels which
sound like they are two independent physical quantities.
The results here do not necessarily shed light on fun-
damental MJO dynamics. Combined-variable indices
always have debatable relative normalizations for the
different variables (Liu et al., 2016). From this study’s
point of view, predicting anomalous clouds and rain
(OLR), the wind information may help the system avoid
being misinterpreted by happenstance occurrences of
MJO-shaped equatorial cloud patterns that are not actu-
ally part of a predictable wave in the real physical mem-
ory variables (inertia or water vapor or perhaps SST).
Predictability can be limited as much by the strength of
distractions and noise as it is by the dynamics of the pre-
dictable subsystem, so results about predictability may
be results about such noise, not about dynamics. LIM
OLR’ hindcast prediction error is better during the DJF
season and in Indo-Pacific longitudes, both indicative
of the region and season where the MJO contributes the
most to OLR anomalies and where tropical OLR vari-
ance is greatest.

Acknowledgements

The authors gratefully acknowledge financial support from NSF
grant 0731520, NASA CYGNSS grant NNX13AQ50G, ONR
grant N000141310704, DOE grant DE-SC0006806, NOAA
grant NA13OAR4310156, and Government of India EarthMM/
SERP/Univ_Miami_USA/2013/INT-1/002. The authors are
also grateful for the two anonymous reviewer’s constructive
comments.

References

Cavanaugh N, Allen T, Subramanian A, Mapes B, Miller AJ. 2014.
The skill of tropical linear inverse models in hindcasting the
Madden-Julian Oscillation. Climate Dynamics 44: 897–906, doi:
10.1007/s00382-014-2181-x.

DelSole T, Shukla J. 2009. Artificial skill due to predictor screening.
Journal of Climate 22(2): 331–345, doi: 10.1175/2008JCLI2414.1.

Hakim GJ. 2013. The variability and predictability of axisymmetric hur-
ricanes in statistical equilibrium. Journal of the Atmospheric Sciences
70(4): 993–1005, doi: 10.1175/JAS-D-12-0188.1.

Kalnay E, Kanamitsu M, Kistler R. Collins W, Deaven D, Gandin
L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A,
Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J,
Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D. 1996. The
NCEP/NCAR 40 year reanalysis project. The Bulletin of the American
Meteorological Society 77: 437–471.

© 2016 The Authors. Atmospheric Science Letters published by John Wiley & Sons Ltd Atmos. Sci. Let. 17: 362–367 (2016)
on behalf of the Royal Meteorological Society.



Wind information in Madden–Julian oscillation prediction 367

Kikuchi K, Wang B, Kajikawa Y. 2012. Bimodal representation of
the tropical intraseasonal oscillation. Climate Dynamics 38(9–10):
1989–2000, doi: 10.1007/s00382-011-1159-1.

Kiladis GN, Dias J, Straub KH, Wheeler MC, Tulich SN, Kikuchi K,
Weickmann KM, Ventrice MJ. 2014. A comparison of OLR and
circulation-based indices for tracking the MJO. Monthly Weather
Review 142(5): 1697–1715, doi: 10.1175/MWR-D-13-00301.1.

Klingaman NP, Woolnough SJ. 2014. The role of air-sea coupling in
the simulation of the Madden-Julian Oscillation in the Hadley Centre
Model: air-sea coupling and the MJO. Quarterly Journal of the Royal
Meteorological Society 140(684): 2272–2286, doi: 10.1002/qj.2295.

Lau KH, Waliser DE. 2011. Intraseasonal Variability in the Atmosphere-
Ocean Climate System. Praxis, 646 pp.

Liebmann B, Smith CA. 1996. Description of a Complete (Interpolated)
Outgoing Longwave Radiation Dataset. Bulletin of the American
Meteorological Society 77: 1275–1277.

Liu P, Zhang Q, Zhang C, Zhu Y, Khairoutdinov M, Kim H-M,
Schumacher C, Zhang M. 2016. A revised real-time multivariate
MJO index. Monthly Weather Review 144: 627–642, doi: 10.1175/
MWR-D-15-0237.1.

Madden RA, Julian PR. 1971. Detection of a 40–50 day oscilla-
tion in the zonal wind in the tropical Pacific. Journal of the Atmo-
spheric Sciences 28: 702–708, doi: 10.1175/1520-0469(1971)028<
0702:DOADOI>2.0.CO;2.

Madden RA, Julian PR. 1972. Description of global-scale circulation
cells in the tropics with a 40–50 day period. Journal of the Atmo-
spheric Sciences 29: 1109–1123, doi: 10.1175/1520-0469(1972)
029,1109:DOGSCC.2.0.CO;2.

Martin ER, Schumacher C. 2011. Modulation of Caribbean precipita-
tion by the Madden–Julian Oscillation. Journal of Climate 24(3):
813–824, doi: 10.1175/2010JCLI3773.1.

Newman M, Sardeshmukh PD, Penland C. 2009. How important is
air–sea coupling in ENSO and MJO evolution? Journal of Climate
22(11): 2958–2977, doi: 10.1175/2008JCLI2659.1.

Penland C, Sardeshmukh P. 1995. The optimal growth of tropical sea
surface temperature anomalies. Journal of Climate 8: 1999–2024.

Sharmila S, Pillai PA, Joseph S, Roxy M, Krishna RPM, Chattopad-
hyay R, Abhilash S, Sahai AK, Goswami BN. 2013. Role of
ocean–atmosphere interaction on northward propagation of Indian
Summer Monsoon Intra-Seasonal Oscillations (MISO). Climate
Dynamics 41(5–6): 1651–1669, doi: 10.1007/s00382-013-1854-1.

Shin S-I, Sardeshmukh PD, Pegion K. 2010. Realism of local and
remote feedbacks on tropical sea surface temperatures in climate
models. Journal of Geophysical Research 115(D21), doi: 10.1029/
2010JD013927.

Straub KH. 2013. MJO Initiation in the Real-Time Multivariate MJO
Index. Journal of Climate 26(4): 1130–1151, doi: 10.1175/JCLI-D-
12-00074.1.

Wang B. (ed.) 2006. The Asian Monsoon. Springer, 787 pp.
Wheeler M, Hendon HH. 2004. An all-season real-time multivariate

MJO index: Development of an index for monitoring and prediction.
Monthly Weather Review 132: 1917–1932.

Xavier P, Rahmat R, Cheong WK, Wallace E. 2014. Influence of
Madden-Julian Oscillation on Southeast Asia rainfall extremes: obser-
vations and predictability. Geophysical Research Letters 41(12):
4406–4412, doi: 10.1002/2014GL060241.

Zhang C. 2005. Madden-Julian Oscillation. Reviews of Geophysics 43:
RG2003, doi: 10.1029/2004RG000158.

Zhang C. 2013. Madden–Julian Oscillation: bridging weather and
climate. Bulletin of the American Meteorological Society 94(12):
1849–1870, doi: 10.1175/BAMS-D-12-00026.1.

© 2016 The Authors. Atmospheric Science Letters published by John Wiley & Sons Ltd Atmos. Sci. Let. 17: 362–367 (2016)
on behalf of the Royal Meteorological Society.


